Extracting multilayer networks from Sentinel-2 satellite image time series
نویسندگان
چکیده
منابع مشابه
Extracting cloud motion from satellite image sequences
This paper present a new technique for the estimation of cloud motion, using a sequence of infrared satellite images. It can be considered a challenging task due to the complexity of phenomena implied, as non-linear events and a non-rigid motion. In this circumstances most motion models are not suitable and new algorithms have to be developed. We propose a novel method, combining an Automatic M...
متن کاملDiscovering Significant Evolution Patterns from Satellite Image Time Series
Satellite Image Time Series (SITS) provide us with precious information on land cover evolution. By studying these series of images we can both understand the changes of specific areas and discover global phenomena that spread over larger areas. Changes that can occur throughout the sensing time can spread over very long periods and may have different start time and end time depending on the lo...
متن کاملGeovisual analytics of Satellite Image Time Series
Satellite image time series provide valuable information on the Earth’s dynamics at a variety of spatio-temporal scales. Progress on information and communication technologies has greatly improved the access to such time series. For instance, the GEONETCast system freely distributes near real time raw satellite images and higher level products to end-users all over the word. This explains the u...
متن کاملExtracting Time-evolving Latent Skills from Examination Time Series
Examination results are used to judge whether an examinee possesses the desired latent skills. In order to grasp the skills, it is important to find which skills a question item contains. The relationship between items and skills may be represented by what we call a Q-matrix. Recent studies have been attempting to extract a Q-matrix with non-negative matrix factorization (NMF) from a set of exa...
متن کاملSatellite Image Time Series Decomposition Based on EEMD
Satellite Image Time Series (SITS) have recently been of great interest due to the emerging remote sensing capabilities for Earth observation. Trend and seasonal components are two crucial elements of SITS. In this paper, a novel framework of SITS decomposition based on Ensemble Empirical Mode Decomposition (EEMD) is proposed. EEMD is achieved by sifting an ensemble of adaptive orthogonal compo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Network Science
سال: 2020
ISSN: 2050-1242,2050-1250
DOI: 10.1017/nws.2019.58